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Abstract

In this report, we will discuss two optimization method: Nestorov’s accelerated
gradient method and mirror descent, from several ways. We will first present the
problem settings each algorithm tends to address and then show the main process
of each one. For each algorithm, we will show the proof of convergence and also
discuss some aspects of the convergence results and developments.

1 Nestorov’s Accelerated Gradient Method

1.1 Introduction

The classic gradient descent update step is defined as xt = xt−1−α∇f(xt−1), where the α
is constant. In class and homework, we discussed some methods that using line search to
choose a better α at each step to speed up the convergence. The Nestorov’s Accelerated
Gradient and the momentum method group it belongs to are other modifications that
introduce another variable and update both variables at each time.

Nestorov’s Accelerated Gradient is originally proposed by Yurii Nesterov in 1983 and
considered to have the fastest convergence rate. However, the intuition behind it is some-
thing hard to interpret at that time. As a group of gradient method called momentum
are proposed, some scientists gave their insights about it that it can be regarded as a
momentum method. We first give the original definition according to Bubeck [2013].

1.2 Definition

Definition 1. (Nestorov’s Accelerated Gradient Method, 1983)

Suppose f is convex and ∇f is L-Lipshitz. Define ε−1 an arbitrary positive number. To
obtain εt for t > −1 , repeatedly mutiply εt−1 by a factor β < 1, i.e. εt = βi · εt−1 until εt
satisfies:

f(xt − εt∇f(xt)) ≤ f(xt)−
1

2
εt ∥ ∇f(xt) ∥2 (1.1)

Starting with λ0 = 0, and an arbitrary initial point y0 = x0, update the following equations
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repeatedly to optimize f(y):

λt =
1 +

√
1 + 4λ2

t−1

2
(1.2)

γt =
1− λ2

λt+1

(1.3)

xt+1 = yt − εt∇f(yt) (1.4)

yt+1 = (1− γt)xt+1 + γtxt (1.5)

.

As shown above, this process iteratively updates two variabels: xt and yt, where xt is
the target that obtained from original gradient descent, and yt is the ’real’ target point
that updated by the combination of current and previous gradients.

1.3 Convergence Analysis

Nestorov’s accelerated gradient method is proven to converge at a rate of O(1/t2).

Theorem 1. If f is convex and L-smooth, Nestorov’s accelerated gradient method satis-
fies:

f(xs)− f(x∗) ≤ 2L ∥ x1 − x∗ ∥2

t2
(1.6)

when choose ε−1 =
1
L
.

Proof. Consider following equations for any x and y:

f(y − ε∇f(y))− f(x) = f(y − ε∇f(y))− f(y) + f(y)− f(x)

≤ −1

2
ε ∥ ∇f(y) ∥2 +∇Tf(y)(y − x) (1.7)

Let y = yt, x = xt, ε = εt, we have

f(yt − εt∇f(yt))− f(xt) = f(xt+1)− f(xt)

≤ −1

2
εt ∥ ∇f(yt) ∥2 +∇Tf(yt)(yt − xt) (1.8)

Rewrite the update equation ((1.4)), we have ∇f(yt) = 1
εt
(yt − xt+1). Thus, we get the

following inequality:

f(xt+1)− f(xt) ≤ −
1

2εt
∥ xt+1 − yt ∥2 −

1

εt
(xt+1 − yt)

T (yt − xt) (1.9)

Let y = yt, x = y∗, ε = εt, we similarly have:

f(xt+1)− f(y∗) ≤ − 1

2εt
∥ xt+1 − yt ∥2 −

1

εt
(xt+1 − yt)

T (yt − y∗) (1.10)

Then, from ((1.9))×(λt − 1)+((1.10)), we get

λtf(xt+1)− (λt − 1)f(xt)− f(y∗) = λt(f(xt+1)− f(y∗))− (λt − 1)(f(xt)− f(y∗))

≤ − λt

2εt
∥ xt+1 − yt ∥2 −

1

εt
(xt+1 − yt)

T (λtyt − (λt − 1)xt − y∗) (1.11)
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Notice following property of λ, from ((1.2)) we have

(2λt − 1)2 = 1 + 4λ2
t−1

λ2
t − λt = λ2

t−1 (1.12)

Multiply ((1.11)) by λt and apply ((1.12)), we get

λ2
t (f(xt+1)− f(y∗))− λt(λt − 1)(f(xt)− f(y∗))

≤ − 1

2εt
(∥ λt(xt+1 − yt) ∥2 +2λt(xt+1 − yt)

T (λtyt − (λt − 1)xt − y∗))

= − 1

2εt
(∥ λt(xt+1 − yt) + (λtyt − (λt − 1)xt − y∗) ∥2

− ∥ λtyt − (λt − 1)xt − y∗ ∥2) (Complete the square)

= − 1

2εt
(∥ λtxt+1 − (λt − 1)xt − y∗ ∥2 − ∥ λtyt − (λt − 1)xt − y∗ ∥2) (1.13)

Notice γ’s definition ((1.3)) and yt’s update equation, we have

yt+1 = (1− γt)xt+1 + γtxt

⇔ yt+1 = xt+1 + γt(xt − xt+1)

⇔ λt+1yt+1 = λt+1xt+1 + (1− λt)(xt − xt+1)

⇔ λt+1yt+1 − (λt+1 − 1)xt+1 = λtxt+1 − (λt − 1)xt (1.14)

Denote f(xt)− f(y∗) as δt, λtxt+1 − (λt − 1)xt − y∗ as ut and apply ((1.14)) to ((1.13)),
we have

λ2
t δt+1 − λ2

t−1δt ≤
1

2εt
(∥ ut ∥2 − ∥ ut+1 ∥2)

≤ 1

2εbest
(∥ ut ∥2 − ∥ ut+1 ∥2) (1.15)

where εbest is the smallest ε among {ε0, ε1, ..., εt}. From the Descent Lemma, we know
that

f(xt − εt∇f(xt)) ≤ f(xt)− εt ∥ ∇f(xt) ∥2 +
L

2
ε2t ∥ ∇f(xt) ∥2

When ε ≤ 1
L
, since L

2
ε2t ≤ εt

2
, the stop condition for ε is always satisfied. So if ε−1 is

smaller than 1
L
, ε doesn’t change and εbest = ε−1. If ε−1 is greater than 1

L
, any future εt

is at least greater than β
L
. Thus, the inequality ((1.15)) now can be written as

λ2
t δt+1 − λ2

t−1δt ≤
1

2εbest
(∥ ut−1 ∥2 − ∥ ut ∥2)

≤ 1

2min
{
ε−1,

β
L

}(∥ ut−1 ∥2 − ∥ ut ∥2)

Sum over from t = 1 to t = t− 1, we have

λ2
t−1δt − λ2

0δ1 ≤
1

2min
{
ε−1,

β
L

}(∥ u1 ∥2 − ∥ ut ∥2)

=⇒ λ2
t−1δt ≤

1

2min
{
ε−1,

β
L

} ∥ u1 ∥2 (λ0 = 0)

(1.16)
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Figure 1

Notice λt ≥ 1
2
(t+ 1) and x∗ = y∗, we get the following result:

f(xt)− f(x∗) ≤ 2 ∥ x1 − x∗ ∥2

min
{
ε−1,

β
L

}
t2

(1.17)

If we know f is L-smooth, we just choose ε−1 = 1
L
, and the Theorem 1 is proven true.

Equation ((1.17)) shows that the Nestorov’s Accelrated Gradient Method converges at a
rate of O( 1

t2
).

1.4 Development

In later years, momentum gradient methods are proposed. We first introduce the original
momentum gradient descent method.

Definition 2. (Momentum Gradient Descent)

Different from classical gradient descent, the momentum gradient descent defines a mo-
mentum velocity as:

vt = µt−1vt−1 − ϵt∇f(xt) (1.18)

and the xt is updated by the current ∇f and previous momentum vt−1:

xt = xt−1 + vt (1.19)

At each gradient descent step, we both iteratively update the (1.18) and the (1.19). It
is called momentum because the xt is updated not only by the ∇f but also the previous
’accumulated’ vt−1s. This effect is pretty like the momentum in kinematics, where the
position is updated by the velocity (momentum) and the velocity (momentum) is updated
by the force.

Some later work showed that the Nestorov’s Accelerated Gradient could also be regarded
as a particular momentum gradient (e.g. Ruder [2016]).
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The most famous development is from Ilya Sutskever, who is now the OpenAI cheif
scientist and became much more famous recently. In his PhD paper, he gave his insight
of Nestorov’s Accelerated Gradient.

Definition 3. (Sutskever Momentum, Sutskever [2013])

Define new variables like follows:

vt := xt+1 − xt

µt := −γt

Thus, the equation (1.5) can be rewritten as yt+1 = xt+1+µtvt. The Nestorov’s Accelerated
Gradient update equations (1.4) can be then rewritten as

xt+1 = xt + µt−1vt−1 − ϵt∇f(xt + µt−1vt−1)

Rephrasing the equation and combining with (1.20), the Sutskever momentum method is

vt = µt−1vt−1 − ϵt∇f(xt + µt−1vt−1) (1.20)

xt = xt−1 + vt (1.21)

The update equation form of Sutskever momentum really looks like the original momen-
tum gradient method. So nowadays it is widely accepted as a form of momentum.

Sutskever’s insight here is, the key difference between Nestorov’s accelerated gradient
and momentum gradient method is that Nestorov’s accelerated gradient does not move
along the current derivative direction, but move towards the derivative of approximate
’next’ point, which makes it change more responsive. As illustrated in fig. 1. More
momentum forms are discussed in this website Ville [2016].

2 Mirror Descent

2.1 Intuition

When developing Projected Gradient Descent, we have the following update step:

xn+1 = [xn − α∇f(xn)]
+

where [δ]+ is the solution to min
y∈S

1

2
||δ− y||2. Substitute y with xn+1, we can get following

equation:

xn+1 = min
x∈S
||x− (xn − α∇f(xn))||2

= min
x∈S
||x− xn + α∇f(xn)||2

= min
x∈S
{||x− xn||2 + 2α∇Tf(xn)(x− xn) +Mn}

= min
x∈S
{∇Tf(xn)(x− xn) +

1

2α
||x− xn||2} (2.1)

where Mn is independent of x. Observing the equation, the second term is the Euclidean
distance between x and xn. A natural thinking is what if we use other distances to better
the convergence when dealing with set S with special geometry. (The intuition part is
mainly from Tlienart [2021], and following contents are mainly from CMU [2020])
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2.2 Proximal Point View

Definition 4. (Bregman Divergence)

The Bregman Divergence from x to y w.r.t. a strictly convex function h is defined as

Dh(y||x) = h(y)− h(x)−∇Th(x)(y − x) (2.2)

By choosing different types of h(x), we can get different Bregman divergence. Two
typical examples are:

1. When h(x) = 1
2
||x||2, the corresponding Bregman divergence is

Dh(y||x) =
1

2
||y − x||2

2. When h(x) =
∑

xi lnxi − xi, the corresponding Bregman divergence is

Dh(y||x) =
∑

(yi ln
yi
xi

− yi + xi)

When
∑

xi = 1 and
∑

yi = 1, we further get Dh(x||y) =
∑

yi ln
yi
xi
, which is called

KL-divergence.

Now, we replace the 2-Norm term in (2.1) with Bregman divergence, i.e., using Bregman
divergence to approximate the distance to the current point xn, which comes to the
proximal point view.

Definition 5. (Proximal Point View on Mirror Descent)

For a unconstrained optimization problem, replace the 2-Norm term in (2.1) with Breg-
man divergence, we have following gradient descent method:

xt+1 = min
x
{∇Tf(xt)(x− xt) +

1

α
Dh(x||xt)}

⇔ 0 = α∇Tf(xt) +∇h(xt+1)−∇h(xt)

⇔ xt+1 = ∇h−1(∇h(xt)− α∇Tf(xt)) (2.3)

When dealing with constrained optimization problem, we can just make

x
′

t+1 = (∇h)−1(∇h(xt)− α∇Tf(xt))

xt+1 = min
x∈S

Dh(x||x
′

t+1) (2.4)

Here I give a simple proof on why 2.4 is valid.

Proof.

xt+1 = min
x∈S

Dh(x||x
′

t+1)

= min
x∈S
{h(x)− h(x

′

t+1)−∇Th(xt+1)(x− x
′

t+1)}

= min
x∈S
{h(x)− h(x

′

t+1)− (∇h(xt)− α∇f(xt))
T (x− x

′

t+1)} (2.5)

= min
x∈S
{h(x)− (∇h(xt)− α∇f(xt))

Tx} (ignore some terms independent of x)

= min
x∈S
{h(x)− h(xt)−∇h(xt)(x− xt) + α∇f(xt)

T (x− xt)}

= min
x∈S
{∇Tf(xt)(x− xt) +

1

α
Dh(x||xt)}
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which is exactly what mirror descent trying to optimize. The (2.5) line is because the
∇h(x) and (∇h)−1(x) cancel out.

2.3 Mirror Map View

In this section, we discuss the Mirror Map view, which is the name Mirror Descent comes
from.

Definition 6. (Mirror Map View on Mirror Descent)

To minimize a convex function f over a convex set S, we first choose a differentiable
strictly convex function h : Rn −→ R, which gives us the mirror map ∇h : Rn −→ Rn.
Starting with x0, the mirror descent algorithm is following:

1. Map xt to dual space: θt ←− ∇h(xt).

2. Do gradient descent in dual space: θt+1 ←− θt − α∇f(xt).

3. Map back to the prime space: x
′
t+1 ←− (∇h)−1(θt+1).

4. If x
′
t+1 out of set S, map it back using Bregman divergence: xt+1 = min

x∈S
Dh(x||x

′

t+1).

The Mirror Map view provides another interpretation of the update equation 2.4 pro-
posed in Proximal Point view. It decomposes the whole update equation into several
steps: using mirror map to map between the dual space (where we move along the
derivative direction) and primal space (where the optimization object exists).

2.4 Convergence Analysis

Before the convergence analysis, the dual norm has to be introduced.

Definition 7. (Dual Norm)

In class, we have already discussed the definition of general norms. Let || · || is a norm,
the corresponding dual norm || · ||∗ is defined as:

||y||∗ := sup{xTy : ||x|| < 1}

Theorem 2. Suppose || · || is a norm, its dual norm then is || · ||∗. h is m-strongly convex.
For all xt, ||∇f(xt)|| ≤ G. The Mirror descent satisfies:

n∑
t=1

f(xt) ≤
n∑

t=1

f(x∗) +
Dh(x

∗||x1)

α
+

α
∑n

t=1 ||∇f(xt)||2∗
2m

(2.6)

Before the proof, we introduce the generalized Cauchy-Schwarz inequality for any norms
as a lemma.

Lemma 1. (Generalized Cauchy-Schwarz) For any x and y, xTy ≤ ||x|| · ||y||∗

Proof. When ||x|| = 0, it is obvious. For ||x|| ≠ 0, || x
||x|| || =

1
||x|| ||x|| = 1. From the

definition of dual norm, we have ||y||∗ ≥ ( x
||x||)

Ty, which finishes the proof.
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Now we start the proof for the Theorem 2.

Proof. Denote Φt =
Dh(x

∗||xt)
α

. We first examine the distance between Φt+1 and Φt.

Φt+1 − Φt =
1

α
(Dh(x

∗||xt+1)−Dh(x
∗||xt))

=
1

α
(h(x∗)− h(xt+1)−∇Th(xt+1)(x

∗ − xt+1)

−h(x∗) + h(xt) +∇Th(xt)(x
∗ − xt))

=
1

α
(h(xt)− h(xt+1)− (∇h(xt)− α∇f(xt))

T (x∗ − xt+1)

+∇hT (xt)(x
∗ − xt))

=
1

α
(h(xt)− h(xt+1)−∇Th(xt)(xt − xt+1) + α(∇T (xt)(x

∗ − xt+1)))

≤ 1

α
(−m

2
||xt+1 − xt||2 + α∇Tf(xt)(x

∗ − xt+1)) (2.7)

The last inequality (2.7) comes from the definition of strong convexity for any norm: f(x)
is m-strong convex, if and only if f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) +m||x− y||2.
This definition is different from the form that the professor gave in class (∇f ⪰ mI w.r.t.
any norms), but I have not come up with a way to show the equivalence of them.

Putting (2.7) together with f(xt)− f(x∗), we have

f(xt)− f(x∗) + (Φt+1 − Φt)

≤ f(xt)− f(x∗) +∇Tf(xt)(x
∗ − xt+1)−

m

2α
||xt+1 − xt||2

≤ f(xt)− f(x∗) +∇Tf(xt)(x
∗ − xt)−

m

2α
||xt+1 − xt||2 +∇Tf(xt)(x

t − xt+1)

≤ −m

2α
||xt+1 − xt||2 +∇Tf(xt)(x

t − xt+1) (because of the convexity of f)

≤ −m

2α
||xt+1 − xt||2 + ||xt − xt+1|| · ||∇f(xt)||∗ (from the lemma 1)

≤ −m

2α
||xt+1 − xt||2 +

1

2
(
α

m
||∇f(xt)||2∗ +

m

α
||xt − xt+1||2)(by the AM-GM inequality)

≤ α

2m
||∇f(xt)||2∗ (2.8)

After getting the inequality (2.8), we are ready to telescope from t = 1 to t = n:

n∑
t=1

f(xt)−
n∑

t=1

f(x∗) ≤ Φ1 − Φn +
α

2m

n∑
t=1

||∇f(xt)||2∗

≤ Φ1 +
α

2m

n∑
t=1

||∇f(xt)||2∗ (2.9)

Now, we nearly proved the theorem. In fact, there is still a missing part need to be proved
to finish the proof on constraint optimization cases: Dh(xt+1||x∗) ≤ Dh(x

′
t+1||x∗). This

can be seen as the generalized ”Projection not expansion” property. However, I have not
come up with it or found enough resources.

To further show the convergence, we can use the two techniques we discussed in class
(i.e., updating the average of xi or defining the xbest) to get a convergence result. Say we
use the first method:
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f(
1

n

n∑
t=1

xt)− f(x∗) ≤ Dh(x
∗||x1)

αn
+

α

2mn

n∑
t=1

||∇f(xt)||2∗

≤ Dh(x
∗||x1)

αn
+

αG2

2m
(2.10)

To ensure the error go to zero as the n goes to infinite, we can choose α satisfying:

− 1

α2

Dh(x
∗||x1)

n
+

G2

2m
= 0

=⇒ α =

√
2mDh(x∗||x1)

nG2

Write back α to (2.10):

RHS = 2

√
G2Dh(x∗||x1)

2mn
(2.11)

which goes to 0.

From the result, we can know the mirror descent normally converges at the rate of
O( 1√

t
). But the Dh(x

∗||x1) term provides us a way to improve the performance: we can
choose better Dh to reduce the distance between x∗ and x1 under the Bregman divergence
measurement.
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